• 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • 2021-03
  • br Refer iframe width height src https www


    2. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England journal of medicine. Oct 5 2017;377(14):1345-1356.
    3. Hellmann MD, Rizvi NA, Goldman JW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. The Lancet. Oncology. Jan 2017;18(1):31-41.
    4. Horn L, Spigel DR, Vokes EE, et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). Journal of clinical oncology : official journal of the American Society of Clinical Oncology. Dec 10 2017;35(35):3924-3933.
    5. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. Jul 1 2010;28(19):3167-3175.
    7. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. British journal of cancer. Jan 2018;118(1):9-16.
    10. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: Elafibranor review of nanotherapeutics currently undergoing clinical trials. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. Jan 2017;9(1).
    11. Caster JM, Wang AZ. Applying nanotherapeutics to improve chemoradiotherapy treatment for cancer. Therapeutic delivery. Aug 2017;8(9):791-803.
    12. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews. Mar 18 2011;63(3):136-151.
    13. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal
    15. Elafibranor Au KM, Min Y, Tian X, et al. Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles. ACS nano. Sep 22 2015;9(9):8976-8996.
    16. Tian X, Warner SB, Wagner KT, et al. Preclinical Evaluation of Promitil, a Radiation-Responsive Liposomal Formulation of Mitomycin C Prodrug, in Chemoradiotherapy. International journal of radiation oncology, biology, physics. Nov 1 2016;96(3):547-555.
    17. Huang KS, Yang CH, Wang YC, Wang WT, Lu YY. Microfluidic Synthesis of Vinblastine-Loaded Multifunctional Particles for Magnetically Responsive Controlled Drug Release. Pharmaceutics. May 3 2019;11(5).
    18. Liu Z, Le Z, Lu L, et al. Scalable fabrication of metal-phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. Nanoscale. Apr 30 2019.
    19. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nature communications. Apr 12 2018;9(1):1410.
    22. Hansen AE, Petersen AL, Henriksen JR, et al. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS nano. Jul 28 2015;9(7):6985-6995.
    23. Lee H, Shields AF, Siegel BA, et al. (64)Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. Aug 1 2017;23(15):4190-4202.
    24. Miller MA, Gadde S, Pfirschke C, et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science translational medicine. Nov 18 2015;7(314):314ra183.
    25. Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking. Scientific reports. Feb 8 2017;7:42109.
    26. Liu C, Shaurova T, Shoemaker S, Petkovich M, Hershberger PA, Wu Y. Tumor-Targeted Nanoparticles Deliver a Vitamin D-Based Drug Payload for the Treatment of EGFR Tyrosine Kinase Inhibitor-Resistant Lung Cancer. Molecular pharmaceutics. Aug 6 2018;15(8):3216-3226.
    27. Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS nano. Sep 27 2011;5(9):7124-7129.
    28. Nascimento AV, Gattacceca F, Singh A, et al. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine (Lond). Apr 2016;11(7):767-781.